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Oscillatory free convection from an infinite 
horizontal cylinder 

By J. H. MERKIN 
University of Manchester 

(Received 21 July 1967) 

The boundary layer on a horizontal cylinder caused by free convection, when the 
temperature of the cylinder is oscillating harmonically, is considered in a way 
which is analogous to the problem of a cylinder performing high-frequency oscil- 
lations along its diameter. It is found that, outside the thin boundary layer on the 
cylinder, a steady flow is induced. An outer steady boundary layer, matched 
with the inner boundary layer, is required in order to be able to satisfy the con- 
ditions which apply at large distances from the cylinder. 

1. Introduction 
In  this paper we consider the problem of the boundary layer on a fixed cylinder, 

on which the temperature is oscillating harmonically with frequency w about a 
mean temperature To, the temperature of the surrounding fluid. The motion is 
caused by the action of oscillating buoyant body forces on the fluid near the cyl- 
inder. This gives a situation analogous to that of a cylinder performing harmonic 
oscillations along an axis perpendicular to its generators. So the method of solu- 
tion that we adopt is to folIow the work of Schlichting (1932) and Riley (1965) 
on the boundary layer on an oscillating cylinder. Schlichting develops a solution 
in powers of U,/wd, which is assumed small; here U, and d are a typical velocity 
and length respectively. The assumption implicit in this method is that the non- 
linear terms in the boundary-layer equations are of smaller order than the linear 
terms, and can be neglected for a first approximation. The justification for doing 
this is discussed by Stuart (1963, pp. 349-56). Schlichting found that he could not 
make the tangential component of velocity u+O at the edge of the boundary 
layer, and a steady velocity of O( U:/wd) persisted outside this boundary layer, of 
thickness O(v/w)g; v is the kinematic viscosity. Stuart (1966) explains that the 
Reynolds number R, = U:/wv of the steady outer flow is the parameter which is 
important in determining how u+ 0 outside the inner boundary layer. For R, 1 
the outer flow is again governed by the boundary-layer equations, and it is at  
the outer edge of this outer boundary layer that u finally becomes zero. Riley 
matches a solution which is valid in the outer boundary layer with the solution 
which holds in the inner boundary layer. It is this matching procedure which de- 
termines an unknown constant appearing in the inner layer solution. 

In  the problem under consideration here, the temperature on the cylinder 
T, is given by T, - To = aTo cos wt, where To is the temperature at  large distances 
from the cylinder. As in all problems of free convection there is no obvious 
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typical velocity scale, and we find that the appropriate velocity scale in this case 
is g/3aTo/w. So the frequency parameter 6 which corresponds to the small para- 
meter in Schlichting’s work is g/3aTolw2R, where g is the acceleration due to 
gravity, p is the coefficient of the thermal expansion, and R is a typical radius of 
the cylinder. As in the case of the oscillating cylinder, we find that outside an 
inner boundary layer, of thickness O(K/w)*, we need an outer boundary layer, of 
thickness O(cl(K/w)*) ,  to be matched with the inner boundary layer, in order to 
be able to satisfy all the required boundary conditions; K is the thermometric 
conductivity. We assume that the system has been oscillating for a long time, 
so that transients have died out, and we can look for solutions which are varying 
only harmonically with time. A solution in the inner boundary layer is developed 
in powers of €4, which is assumed to be small. Although only integral powers of 6 

are suggested by the form of the equations in the inner layer, we find that it is 
necessary to include terms of O ( d )  in the inner layer expansion in order to be able 
to solve the equations which arise in the outer boundary layer. We find that we 
cannot make u+ 0,  and T --f To at the outer edge of the inner boundary layer, and 
a steady tangential component of velocity of O(egpaTo/w) and a steady tempera- 
ture difference of O(saTo) persist outside this boundary layer. As pointed out by 
Riley, once we admit the presence of an outer boundary layer, there is no reason 
to suppose that (T - To) and zc should remain finite at  the outer edge of the inner 
boundary layer. This introduces an arbitrariness into the inner layer solution, as 
we apply boundary conditions only at  the cylinder. The conditions at the outer 
edge of the inner layer are determined by matching the inner layer solution with 
the solution which is valid in the outer layer. The appropriate Reynolds number 
R, of the steady outer flow is (gpaTo)2/w3v, and with R, 9 1 the equations govern- 
ing the outer flow are again the boundary-layer equations, In  the outer boundary 
layer the nonlinear convective terms are of the same order as the diffusive and 
buoyancy terms, and so the inner layer expansion breaks down. Following the 
method of Riley, a solution of the equations governing the steady outer flow is 
obtained in the form of series expansions, analogous to the Blasius series, about 
the stagnation points of the steady outer flow. This solution in the outer layer is 
matched with the solution in the inner layer. 

2. Equations of motion 
The fluid is assumed to be almost incompressible, so that changes in density are 

important only in producing buoyancy forces. The kinematic viscosity Y, and 
the thermometric conductivity K are taken as constants, and in the energy equa- 
tion work done by the pressure, and the effects of viscous dissipation are neg- 
lected. It is found that the velocity is O(g/3uT0/w)in the inner boundarylayer, and, 
with the temperature on the cylinder T, given by T, - To = aT, COB wt, these 
assumptions are justifiable when 

(g/3aTo/wc)2 4 u 4 1 and wR/c < 1 

(Lighthill 1963, pp. 9-13; Whitham 1963, pp. 126-7); here c is the velocity of 
sound in the fluid. 
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The infinite cylinder is fixed with its axis horizontal, and so the problem is 
essentially two-dimensional. The co-ordinate xis defined as the distance measured 
along the surface of the cylinder, the lowest point being the origin x = 0; and 
the co-ordinate y is defined to be the distance measured normally outwards from 
the cylinder. The angle 01. is taken to be the angle made by the outward normal 
with the downward vertical. 

The boundary-layer equations, with the co-ordinate system specified above, 
are (Goldstein 1938, pp. 610-13) 

au av -+- = 0, ax ay 
au au au a2u 
-+u-+v- = g,4(T-To)sinol+v-, 
at ax ay aY2 

aT aT aT 8%” 
-+u-+v-= K- at ax ay  a Y 2 ,  

with boundary conditions 

(3) 

u = v = o ,  
T-To = aTocoswt on y = 0, 
u+O, T+T0 as y-too. 

u and v are the velocity components associated with the x and y directions re- 
spectively, and T is the temperature of the fluid. The appropriate Reynolds 
number of the inner boundary layer is (gpaTo) Rlwv and of the outer boundary 
layer is ( g ~ a T o ) ~ / w 3 v .  In  these boundary-layer equations, the largest terms 
neglected are O(Reyno1ds number)*. We must also impose certain conditions on 
the curvature k of the cylinder to make the boundary-layer simplifications; 

these are k8 < 1, RS(dk/dx) < 1, 

where &is a measure of the boundary-layer thickness, and is O(K/w)i for the inner 
boundary layer, and O(c1(K/w)&) for the outer boundary layer. 

3. Solution in the inner layer 
To develop a solution in the inner layer we follow the method of Schlichting, 

which is discussed by Stuart (1963, pp. 349-56 and pp. 382-8). The nonlinear 
convective terms can be assumed to be of smaller order than the linear terms 
in the boundary-layer equations (2) and (3), when the frequency parameter 
6 = g,4aT0/w2R is small. 

From the continuity equation (1) we can define a streamfunction @ by 

u = -  a+ a+ 
aY’ 

v = - -  ax * 

We introduce non-dimensional variables <, T , ? ,  0 and f as 

$ = x/R, 7 = wt, 7 = ( ~ / 2 K ) * y ,  
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and v = v /K is the Prandtl number. Writing sina = S ( t ) ,  equations (2) and (3) 
then become 

with boundary conditions on 7 = 0 that 

We would like to apply the boundary conditions that 8+0 and af/@+O as 
7 --f co, but, as in the case of the oscillating cylinder, we find that we cannot satisfy 
these conditions as well as the conditions that we must apply on 7 = 0. For this 
reason we regard this solution as valid only in an inner boundary layer, beyond 
which we introduce an outer boundary layer. The resulting arbitrariness of the 
inner solution is resolved by matching the solution a t  the outer edge of the inner 
layer with the solution at  the inner edge of the outer layer. We now proceed with 
the inner layer solution on the assumption that f and 8 must be only algebraically 
large as q -+a. 

Equations ( 7 )  and (8) suggest expanding f and 8 in powers of e, but we find 
that we cannot solve the equations which arise in the outer layer when we do. An 
expansion in powers of €4 is found necessary. We expandf((,r, T) and 8(6,7, 7) in 
the form 

where only the real part is to be taken. The dependence of the terms of O(E)  on 
k follows naturally from 8, and f,, but the equations for fl and O1 are not connected 
with those for fo and O,, so we have to allow for an arbitrary dependence on 5 in 
8, andf,. We put the expansions (10) and (11) into equations ( 7 )  and (8), and 
equate powers of 8. The solutions of the resulting equations which satisfy the 
boundary conditions on 7 = 0 that 

8, = 1, 8, = o,, = e,, = 0, 
f o = f A = f l = f ’ - f  1 - 2s - -fL = f 2 2  = f 6 2  = 0, 

are, provided v =k 1, 

8, = exp{-(l+i)q), (12) 

[( 1 - ~ f )  + d e x p  { - (1 + i) qcr-f} - exp { - (1 + i) 711, (13) 
(1 +i) 

fo = iqzi j  
4 = 49% (14) 
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(( 14) and (15) are the most general solutions of the equations of O(E*) satisfying 
the boundary conditions), 

a+ 
exp{ - (1 +i) (1 +a-i)y} 

+ 2(a-  1) (1 + 204- a) 

1 
-- exp{ - 2(1+ i) y} 4(a - 1) 

at a + l  
exp { - 273 exp { - 27a-t} - -~ 

S ( a -  1 ) 2  16(a- 1 ) 2 a  

-Eexp { - 7(1+ af)}sin ( ~ ( 1 -  a+)) 

-Fexp{-r(l+af)}cos(y(i-a-t)) 

f Z z  = 4 + B2 exp { - (1 + i) 7 4 2  a+} + L exp { - (1 + i) 7) 

+ Mexp { - (1 + i) qa-i} + Nexp { - (1 + i) 7 ( l +  a t ) }  

+ Pexp { - 2(1 + i) r}+ Q exp { - (1 +i) 742}, (19) 

where C and D are constants which are undetermined at  this stage, and 

(a3 + 2 r  + 1) (404 + 14a + 4 d  - az- 1) 
4 ( d +  1) (a+ q5 (a- 1) 

E =  9 
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1 
_______. 

(0.- l)(a&+ 1)’ 

(g3-  2++ 4ag- 40.f 1) 1 + i 
N =  ( 1 + & ) ( a 2 - 6 a + 1 ) ( a -  1)2 (7)’ 

1 
( a - l ) ( 2 a - l ) ’  

Q = (?!) ___ (3+7a5)42 
32 ( 1 + 2 d - ~ ~ ) ( d + l ) ( 0 . - 1 ) ’  

(7a- 2 + 13a% - 4at) ___-~__ 
- 1) (d + 1) ( 1 + 20-3 - a) 

(a3 -20 .2+4~%-4u+1)  
4 2 ( a -  1)2 (a2- 60.f 1) * 

For the case when a = 1, the solution is 

6, = exp{-(l+i)y}, 

i 
f Z 2  = (g) (13 - 11 2/21 + 7 exp { - (1 + i) 71 + $h(l+ i ) 4 2  exp { - (1 + i) 4 2  71 

5i i 
32 

- -7 exp { - (1 + i) 742)- 32 y exp{ - 2( 1 + i)y) -#g(i + i) exp { - 2( 1 + i) y}. 

127) 
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At the outer edge of the inner boundary layer (as y -+ 00) 

(28) 
1 + 3 a  

Cy4 1 + 3 0  
+ €  --+ ( 120  12a(a+  1)27 

The asymptotic forms for $ and (T - To) hold also when v = 1, in which case 

A ,  = (g) (13- 1142) .  

From (28) and (30) we see that we cannot satisfy the boundary condition that 
u+O and T+T, as y+00 even by setting A ( [ )  = B(t )  = 0 and C = D = 0. 
Thus the expansions (10) and (1 1) are valid only in a region of thickness O(K/w)*, 
and the asymptotic forms for the streamfunction $ and the temperature differ- 
ence (T - T,) must be regarded as the inner conditions for the outer boundary 
layer. 

4. Solution in the outer layer 
The steady flow outside the inner boundary layer depends on the Reynolds 

number of this outer flow (Stuart 1963, pp. 384-5). Here the appropriate Rey- 
nolds number is R, = (gpaTo)2/w3v, and with R, 9 1 the equations governing 
this outer flow are again the boundary-layer equations (l), (2) and (3). The thick- 
ness of this outer layer is O(e-I(K/w)&) and it is at  the outer edge of this boundary 
layer that u+O and T+T,. 

In  the outer layer the nonlinear convective terms are of the same order as the 
diffusive terms occurring in (2) and (3). Thus the method of expanding $ and T 
in powers of €4 in the inner layer solution breaks down because the assumption 
implicit in this method is that the nonlinear terms are of smaller order than the 
linear terms in equations (2) and (3). 

We develop the outer layer solution on the assumption that A(<)  = 0 and C = 0 ; 
a justification for this is given in appendices I1 and 111. 

In the outer layer the convective terms are of the same order as the diffusive 
and buoyancy terms. This suggests the definition of non-dimensional variables 
as 
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and with < and 7 given by (4). Equations (2) and (3) then become 

The boundary conditions on f and 8 are that afla?j -+ 0,8 -+ 0 as g --f 03, and the 
inner condition, given by the requirement that the solution in the inner layer as 
7 -+ 03 should match with the solution in the outer layer as 7 --f 0, is 

dS 1 + 3 a  
B -- ( ) + O ( s ) ,  at 4(a+1)2 

near 7 = 0. 
We can now expand f and B in series in €4 

p = To + €ifl + €J2 + ... ) 
B = 8,+dB1+Es2+.". 

(36) 

(37) 

We put these expansions in equations (34) and (35) and equate powers of e .  
The terms of O( 1) give the equations 

and using (36) we have that 
- 
O O  = 80(E1 7 1 7  f0 = fO(67 7). 

Equating terms of O($) gives 

and, as before, using (36) we have that 
- 
O1 = $1(6, 71, f l  = fl(C7 ?)* 

Equating terms of O(E)  in (34) and (35) gives the equations 

From (40) the right-hand sides of equations (41) and (42) are independent of 7, 
and we can integrate them once with respect to 7. Since we are looking only for 
solutions which vary harmonically with time we must have 
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which, to f i s t  order, are the equations governing the flow in the outer region. 
They become in dimensional variables 

aT aT a2T 
U-+v- = K -  

ax ay a y 2 *  

oo-to, a f o / a p o  as V+OO, 

The boundary conditions on 8, and fo are 
- 

and from the matching conditions (36) and (37) 

- dS 1 + 3 a  
o o " - - (  ) near ;i;i = 0. aE 4@+ 

(45) 

(47) 

The method of solution of (43) and (44) is to expandf, and 8, in series, analogous 
to the Blasius series, about the stagnation points of the steady flow in the outer 
boundary layer. If to is the point where dS/d( = 0, we put El = E -  to and expand 
To and 8, in series about the point El = 0. If we assume that the cylinder is sym- 
metric about 5 = to, then we can take the expansion of S(&) in powers of El in 
the form fwl) = 1 - %(6W) + %(&!i:) + 0('2), 
then 

as 
and 

This suggests expanding 8, and To as 

s-= - a <  1 1 + ( a 2  + $a3 E? + O(E3. 

0 0  = %5lSO(S) - @2g1(s) +a321,ts)) ti+ O(E% 

fo = W O ( 4  El- ~ ~ ~ , / ~ l l ~ l ~ ~ ~ + ~ l ~ , , ~ ~ ~ ~ E i + ~ ~ E ~ ~ 1 ,  

a51 

- 
(48) 

(49) 

where h4 = a, and s = hij. 
Near El = 0, the steady tangential component of velocity in the outer layer 

must be directed away from the origin, C1 = 0, for a Blasius series type solution 
to be applicable. This suggests an expansion of B(5,) in the form 

(50) Bf El) = Bo + Bl E? + O(53.  
Putting the expansions (48) and (49) into equations (43) and (44), and equating 

powers of t1 gives the system of equations: 

ah;+g,+h,h;l-h;2 = 0, (51) 

g;+h,g;-h;g, = 0, (52) 
nh? + g1 + h,E; - 4 h p ;  + 3h;lh1 = 0, (53 )  

g;+3g~hl+h,g;-g,h;-3h;gl  = 0, (54) 

( 5 5 )  

(56) 

10 + 1 290 + 910 + hohyo- 4h;h;o f 3hlohi = 0, 

d o  + 39; h10 + hog;, - go K O  - 3% 910 = 0, 
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with boundary conditions, from (45), (46) and (47), as 

h,(O) = hA(0) = hO(0O) = 0, 

h,(O) = h;(O) = h;(co) = 0, 

h,,(O) = h;,(O) = hi,(m) = 0, 

910(0) = 0, SlO@) = 0. 

Dashes denote differentiation with respect to s. 
Equations (51) and (52) explain why we had to include terms of O(&) in the 

inner layer expansion. Without the terms in €4, the matching condition on 
fo would be 

- dS l f 3 a  s3 
fo %g24a(l+0-)zX3 

near s = 0, which, in turn, would mean that h,“(O) = 0. With this extra condition 
on h,(s) we cannot obtain a solution to equations (51) and (52) such that hA(s) 
and go(s) -+ 0 as s -+ 00. 

Equations (51) to (56) have to be solved numerically, and solutions to equa- 
tions (51) and (52) for various values of g, and to equations (53) to (56) for the 
case 0- = 1, are given in appendix I. The difficulty in the numerical integration 
of the nonlinear equations (51) and (52) was to find the values of h:(O) and gA(0) 
before a marching solution could be performed from s = 0. The values of h,”(O) 
and gA(0) were found by using the ‘Haselgrove 2-Point Boundary Value Pro- 
gram ’, which is stored on magnetic tape in Manchester University’s Atlas 
Computer. This program is supplied with guesses for the unknown boundary 
values a t  both s = 0 and s = co (which is chosen to be a t  a suitably large finite 
value of s), a.nd, by integrating forwards from s = 0, and backwards from s = 00, 

tries to ‘fit’ at an intermediate value. The ‘fitting’ is done by adjusting the un- 
known boundary values so that the differences in the functions obtained by the 
forward and the backward integrations are as small as possible. 

The first two constants B, and B, in the expansion of B([,) near [, = 0 can be 
determined from the solutions of equations (51) to (56), since 

B - ~ 0- ( ~ ( h ~ ( 0 ) - h ~ ( O ) ) + o l { h ; o ( O ) - ~ h , ” ( O ) ) ) .  
‘ -Ad2  a, 

For the case of the circular cylinder, where S(&) = cos [,, and a, = 1, a2 = +, 
we find that, for 0- = 1, 

B([,) = -0~1849-0*0360[~+0(~~).  



Oscillatory free convection 57 1 

I would like to thank Mr E. J. Watson for suggesting this problem, and for his 
help with the preparation of this paper. I would also like to thank the S.R.C. 
for the Research Studentship which enabled me to undertake this research. 

Appendix I. The solutions of equations (51) to (56) 

The values of hg(O), g,(O) and gA(0) for various values of (r are listed below: 

Solutions of equations (51) and (52) for various values of (r 

0- 

+ 
0.5 
0.72 
i .O 
1.25 
2.0 
5.0 

h30) 
0.5810 
0.4449 
0.34175 
0.26145 
0.21483 
0.13593 
0.04750 

% ( O )  
0.2813 
0.2778 
0.26776 
0.25000 
0.23457 
0.19444 
0.1 11 11 

d ( 0 )  
- 0.1440 
- 0.1340 
- 0.12102 
- 0.10520 
- 0’09345 
- 0.06780 
- 0.02805 

0.25 

020 

Q15 

010 

005 

0 2 4 6 8 10 12 
8 

FIGURE 1 
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5 

FIGURE 2 

Solutions of equations (51) to (56) for the case when u 

0.20 

0.15 

0.10 

0.05 

0 

-005 

= 1  

FIGTJRE 3 
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g10 I 
FIGTJRE 4 

Appendix 11. To show A ( [ )  = 0 

In  the outer boundary layer the nonlinear convective terms are of the same 
order as the diffusive and buoyancy terms ; this suggests defining non-dimensional 
variables as T-To -- - WE, 7 , 4 ,  

where fl  and T are given by (4). On putting these in equations (2) and (3), we get 
equations similar to (34) and (35) with boundary conditions 

and the matching condition becomes 

-I- .... $- -s-- A (E l  q4 
a[ 2442 



574 J .  H .  Merkin 

We now expand? and S in the form 

7 = fo +€ifl +&f2 + .. ., 
8 = 8,+€*Bl+€~82+..., 
- 

By the same argument as that used in $4, we find that the equations forf, and B, 
are the same as equations (43) and (44), but the matching condition is 

We expandf, and 8, in series in El as in (48) and (49). This yields the system of 
equations (51) to (56) for the first three terms in each series; the equations for 
the first term in each series are 

ah: + go + hob; - hA2 = 0,  

g;+gAh,-h;g ,  = 0.  
We expand A&) in the form 

A ( t J  = A,+4t;+o(E:), 
so that near s = 0 

h, - A,s4/24a1,/2, go - - AOs/uJ2 

and h; -+ 0, go + 0 as s --f co (where s = AT and h4 = al, as before). From equa- 
tions (57) and (58), we see that near s = 0, h, and go can be determined completely 
by the unknown constant A,, and asymptotically (for large s )  by three unknown 
constants. Hence equations (57) and (58), which form a fifth-order system, are 
determined by four unknowns, which cannot be, unless h,(s) = 0, and g , ( s )  = (2, 
whichin turnmeans that A ,  = 0. Once we have shown that h,(s) = 0 and go(s) = 0 
it follows at once that the other terms in the expansions off, and Go are all 
identically zero, which means that the Ai E 0. Prom this we can conclude that 
A(<,) = 0. 

Appendix 111. To show C = 0 

As before, we want to make the nonlinear convective terms the same order 
as the diffusive and buoyancy terms, so we introduce non-dimensional variables 
in the form 
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and 6 and 7 are given by (4). On substituting in ( 2 ) ,  (3) weget equations similar 
to (34) and (35). An expansion off and 8 in series in E gives equations (43) and 
(44) as those satisfied by the f i s t  termsfo and go in each series. The matching 
condition is now 

- dSC7 
8,--- 

J 2 ’  
as c74 

f O W  -s-- 
d< 2442 

This then gives a situation analogous to that in appendix 11, and we can then 
conclude that C = 0. 
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